
How Fast Can We Sort?



It is hard to do something we would call sorting 
without looking at the data, so a lower bound 
for sorting n data elements is W(n).

We can even achieve this lower bound.  

Suppose we have a list of n numbers (where n is 

very large) that are all between 0 and 9.  Take 

an array Counts of 10 entries, all initialized to 0 

and iterate through the numbers.  Each time you 

see a 6 increment  Counts[6]; each time you see 

a 9 increment Counts[9], and so forth.  Then 

replace the original data  by Counts[0] 0's, 

Counts[1] 1's and so forth in that order:



// This assumes every element of A is between 0 and 9.
public void Sort(int[] A) {

int[] Counts = new int[10];

for (int i = 0; i < A.length; i++)
Counts[ A[i] ] += 1;

p = 0;
for (int j = 0; j <= 9; j++ ) {

for (int k = 0; k < Counts[j] ) {
A[p] = j;
p += 1;

}
}

}



This is certainly order n -- it consists of two passes 
that each look at each data item once.

This algorithm goes by various names; many people 
call it BucketSort.  But somehow it seems like 
cheating; this isn't what we usually mean by sorting.

More typically, we are interested in sorting 
algorithms that work by comparing the data 
elements; if you don't know anything in advance 
about the data this is your only option. 

We will show that a lower bound for how many 
comparisons such algorithms make is W( n*log(n) ).



Although we wouldn't code it this way, we can think 
of any algorithm that sorts by comparing data 
elements as asking a sequence of questions that 
compare different elements, sometimes making 
assignments that interchange elements.  Which 
elements get compared depends on the answers to 
previous questions, so this forms a Decision Tree.

For example, here is a decision tree for SelectionSort
for sorting a list of 3 items.  Branches to the left 
reflect NO decisions on the previous questions; 
branches to the right reflect YES.



[a b c]
is A[0] < A[1]?

[a b c]
is A[1] < A[2]?

A[0]<->A[2]
[c b a]

is A[1] < A[2]?

A[0]<->A[1]
[b a c]

is A[1] < A[2]?

[c a b] [c b a] [b c a] [b a c]

[a b c]
is a[0] < a[2]?

A[0]<->A[2]
[c b a]

is A[1] < A[2]?
[a b c]

is A[1] < A[2]?

[c a b] [c b a] [a c b] [a b c]

N Y

Here A[0]<->A[1] means interchange A[0] and A[1]. 



Note that the decision tree must have at least 
n! leaves since there are n!  different 
orderings of n elements and there must be at 
least one leaf for each possible ordering.



It is easy to see that

Theorem: A binary tree of height h can have no more 
than 2h leaves.

If you stand that on its head it says

Theorem: A binary tree with n leaves must have height 
at least log(n).

Since our decision trees have n! leaves and their heights 
are the maximum number of comparisons needed to 
sort any particular ordering of the data we can say that 
the sorting algorithms all do at least log(n!)  comparison.



So how big is log(n!)??

log(n!) = log(n) + log(n-1) + log(n-2) + ... + log(1)

The first n/2 terms: log(n), log(n-1) etc. are all >= 
log(n/2).

So
log(n!) >= (n/2)*log(n/2)

=  (n/2)*[ log(n) - 1 ]
= (n/2)*log(n)  - n/2
= Q( n*log(n) )



Altogether, we can conclude that: 
Any algorithm that sorts by comparing data 
elements has to do at least W( n*log(n) ) 
comparisons and that a lower bound for its 
running time is  W( n*log(n).

This semester we have talked about  
BubbleSort, SelectionSort, and InsertionSort, 
which are all O( n2 ), and MergeSort, QuickSort
and HeapSort, which are all O( n*log(n) ). We 
know there is no algorithm with a smaller order 
of growth.



There are a few other sorting algorithms. A 
famous one is called ShellSort after its 
inventor, Donald Shell; it runs slightly faster 
than QuickSort on real-world data.  Most 
people feel that QuickSort is good enough for 
almost any situation. 


